首页> 外文OA文献 >Automated detection of atrial Fibrillation using R-R intervals and multivariate based classification.
【2h】

Automated detection of atrial Fibrillation using R-R intervals and multivariate based classification.

机译:使用R-R间隔和基于多变量的分类自动检测房颤。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study we investigated two multivariate based classification techniques, Random Forests (RF) and k-nearest neighbor (k − nn), for improved automated detection of AF from the ECG. We have compiled a new database from ECG data taken from existing sources. R-R intervals were then analyzed using four previously described R-R irregularity measurements: (1) The coefficient of sample entropy (CoSEn) (2) The coefficient of variance (CV) (3) Root mean square of the successive differences (RMSSD) and (4) median absolute deviation (MAD). Using outputs from all four R-R irregularity measurements RF and k − nn models were trained. RF classification improved AF detection over CoSEn with overall specificity of 80.1% vs. 98.3% and positive predictive value of 51.8% vs. 92.1% with a reduction in sensitivity, 97.6% vs. 92.8%. k − nn also improved specificity and PPV over CoSEn however the sensitivity of this approach was considerably reduced (68.0%).
机译:从心电图(ECG)自动检测AF仍然是一个挑战。在这项研究中,我们研究了两种基于多元变量的分类技术,即随机森林(RF)和k近邻(k-nn),用于改进从ECG自动检测AF。我们从现有数据中提取了心电图数据,从而建立了一个新的数据库。然后使用先前描述的四个RR不规则性测量来分析RR间隔:(1)样本熵系数(CoSEn)(2)方差系数(CV)(3)连续差的均方根(RMSSD)和(4) )中位数绝对偏差(MAD)。使用所有四个R-R不规则性测量的输出,对RF和k-nn模型进行了训练。与CoSEn相比,RF分类改善了AF检测,总体特异性为80.1%对98.3%,阳性预测值为51.8%对92.1%,敏感性降低了97.6%对92.8%。与CoSEn相比,k-nn还改善了特异性和PPV,但是该方法的灵敏度大大降低(68.0%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号